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FOREWORD

The Operations Research Ceanter at the Massachusetts Institute of
Technology is an interdepartmental activity devoted to graduate educa-

tion and research in the field of operations research. The work of the '

Center is supported, in part, by government contracts and grants. The

work reported herein was supported by the Office of Naval Research

under Contract No. N00014-75-C-0556.

PR )

Richard C. Larson
Jeremy F. Shapiro

b A A 2 A A

Co~Directors

ABSTRACT :

Disaggregation and resource allocation problems cam be often

formulated as convex knapsack problems with bounded variables. In
this paper, we provide a recursive procedure to solve such problems.
The method differs from classical optimization algorithms of convex
programming in that it determines at each iteration the optimal value
of at least one variable. Applications and computational results are

presented.




1. INTRODUCTION

In this paper we present a recursive method to solve the following

continuous knapsack problem with bounded variables:

(N): z = min I G,(

soge 19

I x, = P° (1)
b, < x, < ub jeJ° 2
x, eX jeJ°

where G, (*) for jeJ° are differentiable convex functions on the open convex

h]
sets X, C R, jcJ° respectively.

J
Problem (¥) arises in many different settings. We briefly illvstrate
some of the major applications.
In production planning and scheduling, problem (N) arises in the
following way. The allocation of production resources, as for examnle
labor hours or machine capacity, is made with aggregate data. The results
are aggregate plans that must be implemented at the detailed level and tharefore
need to be disaggregated. It is at this point that problem (N) plays arn

important role. Two of the objective functions encountered in these

gituations are

S,D
- .—J—i l o
a) Gj(xj) % +3 hjxj jed

where for each iten i, Sj’ D,, g0 and xj correspond to the setup cost,

h|

the demand, the holding cost per period and the number of hours of labor to

be assigned to the item.

AU 5 d b s g o o1 e
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P® - I (AL -SS ) 2
- keJ°® k k . *17- A;j + Ssj .
b) Gj(xj) ¥ Dk D jeJ
keJ® ]

The quantity P° represents the total number of labor hours assigned by the
aggregate plan to the family composed by the set of items {k: keJ°}. Tor any
generic item keJ°, AIk, Ssk’ Dk’ and xk are respectively, the availahle
inventory, the safety stock, the demand, and the number of labor hours to

be allocated to that item. In this case, problem (N) attempts to equalize the
run out time of each item j, i1.e., the length of time that the number of

units produced during xj will last, with the run out time of the family

{k: kel°}.

Constraint (1) typically assures that the disaggregation process is
consistent with the aggregate plan while, the lower and upper bounds (2)
guarantee respectively that the demand for each item will be met and that
the overstock limit will not be exceeded. Other applications to production
Planning can be found in [2] and [3). A related application is the extensive
use of problem (N) in inventory control to dtermine lot sizes and buffer
stocks under aggrerate constraints (see [6] and [8]).

Very often the allocation of financial resources gives rise tec knapsack
problems with bounded variables. A typical objective function in this

instance is

Gj(xj) = -sj(x +c )/(xj+m

1+ ) withm > ¢ jeJ°

3 K

=Gy (% 3

(1) indicates that the total amount available for investment must eaual P°

) represents the return of investing x, units in activity j. Constraint

and the lower and upper bounds are imposed by the market. Of course, the

function G, (x

b I

Some other contexts where problem (N) has been applied are the theory

) need not be identical for all jeJ°.

LS AN ot . . i RPN : ¢ R




-3

of search [4], the allocation of promotional resources among competing
activities [9]}, [11], and subgradient optimization [5].

In many instances where (N) plays an important role the set J° may
have several hundreds or thousands of elements. Moreover, the problem has
to be solved many times. In hierarchical production planning, for exarrtle,
(see [2} and [3]), problem (N) typically is used in two or more levels of
disaggregation and is solved at the beginning of each period. Consenuently, an
efficienc method to solve the continuous knapsack problem with bounded
variables 18 of central interest to many applications.

Formerly, this problem has been treated, for particular objective
functions, by convex programming arguments [4] and by dynamic programming
[11]. Luss and Gupta [9] have presented an iterative method mainly for
strictly convex decreasing functions and a one pass algorithm for a set of
particular functions with the variables bounded from below. Luss and
Gupta's method consists in relaxing the upper bounding constraints. The
algorithm proposed in this paper applies for a more general set of functions
whenever the simpler problem of the form min {I Gj(xj) ¢ 8t ij = P, xjexj},
obtained by relaxing both bounds (2) and solved at each iteration, has 2 solu-
tion. This ccndition is met in most practical applications. We also provide
results for the.case where the relaxed problem has no solution. At the end
of each iteration of our algorithm (except possibly the last),we show that
either the subset of variables {x, : x Z_Ubj} have optimal value ub, in

3 3

(¥) or the subset {xj P %y f.lbj} have optimal value b, in (N). This

3

characteristic of the algorithm differs from classical convex prograrring
methods. More recently Armstrong, Cook, and Palacios-Gomez [1] developed a
branch and bound algorithm to solve a problem related to (N). They require

the variables xj to be either equal to zero or to be in the interval [1.uj]jeJ'

and the functions G,( ) jeJ° are assumed to be concave increasing on ll.uj)

3

and zero elsewhere.




o

2. THE ALGORITHM

In section 1, we assumed that the functions Gj(xj) are convex and

differentiable. Without loss of generality we can add the conditions:

a) ub, > b, jeJ° since, 1f ub, = b, for some kecJ® the value of X, ie

] ] k k

determined. Hence, k can be deleted from J° and P° replaced bv P°—xk.

b) LI b, <P° < I ub,. Otherwise the problem is either infeasible or

jEJo j€J° j
the solution is trivially determined.

(N) is a convex problem with linear constraints.

Hence, the correspond-

ing Kuhn-Tucker conditions (3) - (9), below, are necessary and sufficient [10]

for optimality of X, jeJe.

i

3

Let DG (xj) denote the derivative of Gj(') at the point x, and let

*
xj for jeJ° be an optimal solution to (N). The Kuhn-Tucker conditions are:

¥
DGj(xj) + A+ uj - Tj = 0 jeJ
u (x*- b,) = 0 J°
3 %570y Je
T,(b-x}) = 0 3
300375 ie
*
I x, = Pp°
jege 3
by < xy < ub, jeg®
AeR, ug >0, Tj >0 ieJ°
* X °
xjs 4 JeJ .

(3)

4

(5)

(<)

)

")

»

A, u,, and Tj are the Kuhn-Tucker multipliers associated with the constraints

b

1, ubj-xj > 3

0 and x -ij > 0 jeJ° respectively. When ub

g =4 by = =]

for some jeJ°, the corresponding condition (4) [(5)] and multiplier'uj [Tj]_-

are deleted.
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We first state and prove the optimality of the algorithm under the

assumption that all relaxations N(B) of (N) encountered in step 1 have an

optimal solution. At the end of this section we relax this assumption.

TSR ETTNT TR SRR, TR

The Algorithm

R e A Ct

: Initialization: J! = J°, P! = p°, % J
; Iteration 8 (R=1,2,3...) i J
% Step 1: Solve N(B) : min { % 8 Gj(xj) : I 8% = PB, jexj jeJB}
jeJ jeJ
and let the solution be x? jeJB. if lbj j.xg f_ubJ jEJB define
x; = x? jeJB and stop,the solution x; jeJ° generated by the 1

algorithm is optimal. Otherwise go to step 2.

Step 2: Compute

B - B_ B o B, ?
A ngS (xj ubj) where J' {jeJ xj E,Ubj} : i
and f ‘

8 B _ ] :
v o= b, - . :

jeJB ( by xj) where J° = (3e3f X < Q,bj} !
Step 3: If Aeli V8 define x; = ubj jEJE and let
AR JB-J_E, PP . Bl g ub, .
jedy .
1£ 48 < VB define x; = 2, I8 and let
RLACIIIIR LS LT LGP LA )
jed” 3
If JB+1 = ¢ stop. The solution x:| jeJ® generated by the alporithm

is optimal. Otherwise let B = B+l and go to step 1.

Since at each iteration the set JB is reduced by at least one element, the
algorithm is finite. The algorithm relies on the fact that it is gererally

much easier to solve N(B) than (N). Problem N(B8) can be solved by using

{ its Kuhn-Tucker conditions. In fact, in several practical applications it
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is even possible to obtain a solution in closed form.

*
To prove that xy jeJ°, generated by the algorithm, solve (N), we construct

a corresponding Kuhn-Tucker vector through the following results. Let XB be i

] : the Kuhn~Tucker multiplier associated to the knapsack constraint ir *1(R).

B

Lemma 1: If at iteration 8 A™ > VB then

a) forany‘seJE we have -DGs(ubs) 2_-DGi(ub1) for all ieJB- E and —DGs(ubs) 3_18

b) 2Bt < AB

Proof:

B

B B 8 B
a) A7 = -DGj(xj) jeJ”. Let seJ_ and ieJ

-JE. Since the functions Gj(-)

are convex, for any pair xj, x; in Xj we have [10]:

2y 1 2 _ 1
[DGj(xj) DGj(xj)](xj xj) >0 (10)
It follows that
-D6_(ub ) > -06_(x) = AF = -pg, B > -pe, (w,)
s 8 — s 8 1717 — i1
1) B ij = P 3 ij <P 5z w, = P - 3 x?“
B_8 8 g 3 BHL
jed —J+ jeJ+ jeJ+ Jed
For at least one j sJB+1 we have xB+1 > x8 . Thus
° jo jo
B+l g+1 8 B
A = -DG, (x; ) <-DG, (x,) = A
jo jo jo jo
where the inequality follows from (10). -
Similarly,
Lemma 2: If at iteration B AB < VB then

B_38 ana -DG6, (b)) < »B

a) for any sle we have -DGs(lbs) < -DGi(lbi) for all ieJ
b) AB+1 > AB
The proofs of this lemma and of theorem 4 are omitted because they are similar

to those of lemma 2 and theorem 3 respectively.
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Theorem 3: Assume that AB > VB, Ai < Vi i=p+1,8+2,...,Y-1. Then

a) JY2 (JB-J_‘:-J_B)

) 28>
Proof:
PB+1 - z ?+1 = I x? - I ubj + I xg - L x§+A8
g+l B_.B B B B+1
JeJ jeJ =J jeJ jeJ jeJ
+ + + (11)
AT x?+2 3 x?ﬂ I
jegt+? jesftl jleﬂ
= T x? + T x? + AS - z ij.
JeaftlogBHl jeaftl jeaf*l
.aas, since JB+2 = JB+1-JE+1
pP+2 z ij+AB- z (kbj—xje). (12)
jegft? jleﬂ
Similarly we obtain
Y-1
P o= x?+AB— Tz (R,bj-x?). (13)
je3” =Bl yey8
From (11) it follows that for at least one joeJB+1
B+1 B
x > x . 1¢)
3, 3,
But, from the Kuhn-Tucker conditions for N(B) and N(B+1):
26, (%) = 2B ana -po (Y = BT 4Pt (15)
Combining (10), (14), (15), and lemma 1b) it follows that
£ > x> for all jeJB+1. (16)

3

3
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Note that 1if AB = (0, then x?+l = x? jeJd

B+1

solve N(B+1) and if AB > 0, at

least one inequality in (16) will be a strict inequality. Moreover, if the

B+l

functions Gj are not all strictly convex, it is possible that -DGj (xj ) =
o )
Aﬁ+1 = AB. In this case N(B+l) may have more than one optimal solution.
However, at least one will satisfy (16). Thus
Bl s® g 8- 1w >0, an.
- =T g 1 J
jed’
Similarly, (12), (17), and the fact that JB+2 = JB+1-J§+1 imply that
x§+2 > x? for all jeJB+2, J§+2g J? and
FC. (lbj-xg) - (lbj‘x?) > 0.
JegBL Jet?
Thus,
PB+3 = L x?+3 > z xs .
jsJB+3 jeJB+3
Continuing with the same reasoning, we cbtain
Y-1
e i,y AB- 5 s (lbj-xg) >0
s=0+1 jle
and from (13)
PY = I x'> I xB. (L))
Y 3 - Y h|
jeJ §eJ
These conclusions together with JE*1 = 3B _ 3B ang J1*1 - Ji-Ji =B+1, ..., ¥-1
prove part a). From (18) it follows that x} > x? jeJY. Thus, from (1N)

and (15) with Y instead of B+1

- AB .

Y o o Y _ B
A DGj(xj) < ch(xj)
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Theorem 4: Assume that AB < VB, A1 > V:l i=f+1,8+2,...,Y-1. Then
a) I3V 2 (JB-JE-J_?_)

b) 2B <Y
*
Theorem 5: The set xj jeJ° generated by the algorithm is optimal in (N).
*
Proof: By lemmas 1 and 2, theorems 3b) and 4b), the set x, J€J° penerated

h|
by the algorithm has the following property:

*
=DG, (ub, ) > ... >=DG, (ub, ) >-DG (x ) = ...
k1 k1 kp kp i "

*
= -DG_ (x. ) > -DG, (%b > ... 2 =DG, (b, ) (19)
Vg Vg 1, 11) 1.1,

where, the indices kl, k2,..., kp; 11, 12,..., 18, and vl, Voseoos vg correspond
to variables for which the optimal value was set at the upper bound and lower
bound in step 3 of the algorithm and variables whose optimal value was
obtained in step 1 of the last iteration of the algorithm respectively.

To see that conditions (3) - (9) are satisfied take,

%*
A = -DG (x ),
1™

T

4 = A+DG (b ) >0, w, = 0 3=1,2,...,s

i 3 h| 3

= ~DG,_ (ub, ) - X >0, T = 0 j=1,2,...,p and
&, ke ky 3

T = u = 9 3=1,2,...,8.

*
Thus, since xj JeJ°® also satisfies (6), (7), and (9) it follows that

*
= ub j=1,2,...,p; X =X 3=1,2,...,8; and
ey T Ty 1Y

x, = zbi j=1,2,...,8 solve (N).
3 b

-
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£
i Since the algorithm depends strongly on the existence of a solution

to N(B) we prove the following theorem. Let xj(A) denote a point in P

T

where DGj[xj(A)] = A,

Theorem 6: If Gj(-) jeJB are strictly convex and differentiable on xj

then, a necessary and sufficient condition for N(B) to have a solution is

that there exist Al and Xz such that

L% 0 < <z x, (A;) with
jeJ°® je3®
B
xj(Al)exj and xj(Az)exj jeJ
Proof: Sufficient Condition: The functions xj(l) jeJB are continuous.
Thus, I ij(l) is a continuous function of A. Moreover, xj jeJB are open

jed

intervals in R. Therefore, there are a AoeR and points xj(lo)exj jeJB

such

that Igx () = R,
jed
Necessary Condition: Follows from the Kuhn-Tucker conditions

for N(B). ol

It is worth pointing out that a necessary condition for N(8) to bave a

solution 1s that

max lim DG (xj) < min 1lim DGj(xj) 2"
1e3® *578y 1e3® %570
xjexJ xjex]
where
- . 8
a inf{xeR: xjexj} jeJB and
bj = gup{xeR: xjsxj} 3ed

Condition (20) can be useful as a tool to conclude that N(B) has no eolution.

When there are strictly increasing and decreasing functions over X, among

3
the functions Gj(') jeJB. N(B) has no solution. In this case the left band

i Arr

side of inequality (20) is negative. The next theorem shows how to cope with
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this difficulcey.

Let J, = {jel°: Gj(~) is strictly increasing}, 3 # P and let

1
J, = {jeJ°: Gj(-) is strictly decreasing}, I ¥ §. Note that we do not
require J°-J1-J2 to be an empty set. Assume that (N) has an optimn! colution
*
xj jeJe, ubj < 4o and ij > «»  jJeJ°.

Theorem 7: The optimal solution of (N) is such that either

*
X, = ubi ier and/or X = lbi 1eJ1.

Proof: The optimal solution satisfies (3) - (9) and in particular

*

-DGj(ubj) = A+ ug jeJ(ub) = {jeJ°: Xy = ubj}

o, * -
-DGj(lbj) = A - rj jeJ(2b) = {jeJ°: ) ij} and
-G, (x;') = A 1eJ° - J(&b) - J(ub).

Note that the assumption P° > I ij implies J°-J(fb) ¢ O. If
jeJ°
min{-DGj(x;) 3€3°=3(2b)} > 0, since -DG (x,) < 0 ieJ , it follows that

J1 C J(4b). Otherwise, since -DGi(xi) >0 ieJ, and -DGJ (ubj
-DGk(Zbk) for any jeJ(ub) 1eJ°-J(ub)-J(%b) and keJ(fb), we have that

3, SI(ub). |

A direct consequence of theorem 7 is that the solution to (N) car be

*
) > -pe, (x) >

obtained by solving the following two problems

(N,): z, = min{ I G, (x,): )3 x, = P°~ I ub, £b,<x <ub, jeJ°-J,}
(N,): z, = min{ I G (x,): I x,=P°- I b, % Sy Suky jeJ‘-Jl}

° 373 ° 3 h)
je3°-J, jert-3, jeJ,

and taking z = min ( Z G, (ub

f j)+zl. L G (2bj) + 2,). By analyzing the
e,

3e3, i

Kuhn-Tucker conditions (3) - (9) it becomes apparent that problem (1) has
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no solution if there are simultaneously a strictly increasing Gj (°) with

lbj = -» and a strictly decreasing Gj (*) with ubj = 4 and these two limits
1 2 2
are attainable on xj and xj respectively. Our algorithm does not apply in
1 2

these instances. However, it is not difficult to show that Theorerm 7 holds
if only decreasing functions (increasing functions) have unbounded upper
bounds (lower bounds).

Concluding this section we consider a version of problem (N) when the knapsack
constraint 1s an inequality. Let (N<) and (N>) be the versions of (¥) with
constraint 1 being an inequality of the type < and > respectively. Tor each
index j€J° let hj be the value of xj for which DGJ(xj) = 0 over xj. If such

point does not exist we adopt hj = w0 (4) in Theorem 8 (Theorem 9) below.

*
Let x correspond to thoee in

h|
expression (19).

jeJ° solve (N). The indices kj’ vj, and 11

Theorem 8:

a) If A = -1>cvj (x:j) 20, x = x; jeJ° solve (N<)
B - om0, (x:j) < 0, x; defined as:
x1J = lbij j=1,2,...,8;
xvj = max (lbvj,hvj) 1=1,2,...,8;
xkj = max (Lbkj,hkj) for all kJ such that Dij(ubkj)_z 0; and
xkj = ubkj for all kj such that Dij(ubkj) < 0 solve (N<).

Theorem 9:

*

a) IfA--ncv (xv)_<.0. Xy
J 73

b) If = -ncvj(x:j) > 0, x, defined as:

= x; JeJ° solve (N>)

x = ub I=1,2,...,p3
ky ky

Az
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xv:l -min(ubvj,hvj) 3=1,2,...,8;

4 - nin(ubi ’h:l ) for all 1:, such that DGi (%1 ) <0; and
] I | h| 3
x = 2b. for all i, such that DG, (b, ) > 0 solve (N>).
1 i b i i -

J h ] h | b

Theorems 8 and 9 show that problems (N<) and (N>) can be solved hy first
applying our algorithm to solve (N) and next making appropriate chanpes to

*
x:l jeJ. The proofs of both theorems have been omitted because of their simpli-

city. The extensions of the last two results for the case where the solution

to problem (N) has all variables at the upper or lower bound is strnichtforward.
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3. COMPUTATIONAL RESULTS <
Tables 1 through 7 present the results of solving 84 problems of type 5
1

(N). All problems were solved by the algorithm described in this paper and

whenever applicable by Luss and Gupta's method [9]. Por identification
' purposes, our algorithm is denoted by BH, while the algorithm in [9] is |
denoted by LG. In each problem, the objective function was composed by
functions Gi(xi) of the same functional form. They are indicated in the first row i
of each table., Following the time in seconds to solve each problem, by both !

methods, is the number of iterations required. n represents the numrber !

of variables in a problem. For a fixed n we solved three problems for ; t
each type of objective function. In Luss and Gupta's method [9] the ordar- !
ing of the derivatives evaluated at the lower bound of each variable was
executed by the "Quicksort Method" [7]. 1In our algorithm, problems I'(R)

were solved using the corresponding Kuhn-Tucker conditions. Luss and fupta's
algorithm does not apply to the problems of Tables 6 and 7, because efther
the objective functions are strictly convex increasing (Table 6) or

we have not imposed, as their algorithm requires, any condition among the

values of the bounds, P° and the point where each of the Gi(xi) attains its
minimum (Table 7). The computer used is a Borroughs B6700. The proprams were
written in Algol. Applications of problems presented in Tables 5 and 7 to
hierarchical prodrction planning can ﬁe found in {2] and [3]. The para-
meters (si,mi,lbi,ubi, etc.) corresponding to problems of Tables 1 throuch
5 (6 and 7) were randomly generated in intervals where the functions Gi(xi)
are strictly convex decreasing (strictly convex).

For the problems presented in Tables 1 through 5 we have noticed that the

time required by Luss and Gupta's method just to compute the derivatives at

the lower bound and order them is comparable to the total time of our alroritim.
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As a final note, we would like to point out that, although we have

tried to program both algorithms as efficiently as we could, the computational
results should be looked upon with caution. The intent of including the
results of these experiments is to give to the reader an idea of the time
required to solve problems of the type (N) with different objective functions
and sizes. The major attraction of our algorithm is its applicability to a

wider class of problems than the one in {9].
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